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The first order term of the intermolecular energies between two hydrogen molecules and between 
Li + and H 2 has been computed by three different methods: two of them are based on a perturbative 
procedure, including or neglecting the overlap between the orbitals of the interacting molecules or 
atoms in the calculation of the electrostatic and exchange terms. We can then study the effect of the 
overlap on each of these terms. The third method is the SCF supermolecule treatment which provides 
results in very good agreement with the perturbative procedure including the overlap. The T con- 
figuration in the case of two hydrogen molecules and the C2~ configuration for Li + + H 2 are stable with 
respect to the first order term. 
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1. Introduction 

In the  ca lcu la t ion  o f  the in te rmolecu la r  in terac t ions  between two molecules  or  
a toms  f rom a pe r tu rba t ive  procedure ,  the first o rde r  energy is no t  the  least  o f  the 
difficulties because  o f  its s t rong sensit ivity to the over lap  in the region o f  the van 
der  W a a l s  min imum.  F o r  such in te rmolecu la r  dis tances,  we have then to t ake  into 
account  b o t h  the exchange energy (Refs. 1 and  2 give mos t  o f  the  p rocedures  which 
have been p r o p o s e d  to include this term in a general  t r ea tment )  and  the effect of  the 
charge over lap .  This  last  effect which is neglected in the  mul t ip le  expans ion  has 
been cons idered  in some cases for  the d ispers ion [3, 4, 5a]  o r  the  induc t ion  energy 
[4a, 5] bu t  it seems tha t  such a t r ea tmen t  has been done  on ly  for  the C o u l o m b  
energy when  the f i rs t -order  t e rm plays  an i m p o r t a n t  role [5c].  Recent ly ,  we pub-  
l ished some p re l imina ry  results  concern ing  two hyd rogen  molecules ,  ob ta ined  f rom 
a pe r tu rba t ive  p rocedure  using b io r t hogona l  o rb i ta l s  [2].  F o r  each C o u l o m b  term 
of  the pe r tu rba t ive  series we can thus s tudy the effect o f  the  charge  over lap  and the 
effect o f  the co r r e spond ing  exchange term. In the present  work ,  this p rocedure  
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(where the biothogonal orbitals are built from the set of occupied orbitals only) is 
compared with a perturbative method neglecting the charge overlap and with the 
first iteration of the SCF supermolecule treatment. This is done for H 2 + H2 and 
Li + + H2 at large and intermediate distances using extended basis sets. 

2. The Details of the Calculations 

In the perturbative method based on biorthogonal orbitals, the Rayleigh- 
Schrbdinger perturbation expansion is expressed directly in a non orthogonal 
basis [-6]. Each molecular orbital l i) (occupied or virtual of the molecule A or B) is 
associated with an orbital 1/>; the set of these biorthogonal orbitals I/) is obtained 
by expanding 

l/>=Z [j> (s- 1)j~ (l) 
J 

where (S - ')ji is theft element of the inverse of the total overlap matrix built from 
the molecular orbitals of A and B. We have then 

<_/)> (2) 

In this work, only the occupied orbitals have been. used to build the set of bi- 
orthogonal orbitals. Starting from an Epstein-Nesbet partition of the hamiltonian, 
we can write 

H = / t o  + 1> (3) 

where 

and 

no=s <JIHI/>I/>< I 
I 

/~o K) = ~~ with IK) = [dlnI ~ } 

Ig and IB describing configurations of A and B. The antisymmetrized zeroth-order 
wavefunction is an eigenfunction of the non-hermitian hamiltonian/4o and pos- 
sesses the proper symmetry with respect to the intermolecular electron permutation. 
For closed-shell molecules, if we write 

E el?ct = 2 Z (aol g .lao)+ 2 Z O__ol VNAIbo) (4) 
ao bo 

+ 2 4(aoaolbobo) 
aobo 

E~h = -  Z 2(aobo[boao) (5) 
aobo 

then the first-order energy is 

i E~ ~ = E~~ + E~ch (6) 

where a o and b o refer to the occupied molecular orbitals of the molecules A and B. 
VNA and VNB are the nuclear attraction hamiltonians for the molecules A and B 
respectively. 
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When the overlap is neglected, _a o is identical to ao, and _b o to b 0 in expressions 
A~ AM E l M .  (4) and (5). We shall call these terms Eelect, Eexch and They correspond 

to the term e~v given in expression (16) of Ref. [7] based on the Amos 
and Musher procedure [8]. The comparison of these terms with E~l~ E~~ and 
E~ ~ respectively shows the effect of the charge overlap. We must notice that, if 
none of  these two procedures is based on the multipole expansion (since we do not 
use the R -  1 expansion which allows the decomposition in terms of  multipoles) the 
second one has the common property with the multipole expansion that the charge 
overlap is not taken into account. 

These perturbative approaches are compared with the first iteration of the 
supermolecule treatment. We call E~ the difference between the SCF energies of 
the isolated molecules and the energy of the first iteration of the calculation where 
starting vectors are Schmidt orthogonalized vectors of these isolated molecules. 1 

Basis Sets 

In the system Li + + H2, we have used the same basis as in Ref. 9. In this basis, 
some polarisation functions have been added to the initial basis used by Lester [10] 
in view to improving the description of the dispersion energy. We have then: 

Li + (94) [54] 
s 921,271(0.001366); 138.730(0.010413); 31.9415(0.049827); 

9.35330(0.160586); 3.15790(0.344478); 1.15690; 
0.44460; 0.07670; 0.02860; 

p 0.775; 0.33700; 0.07980; 
0.02460. 

H 2 (64) [64] 
s 68.16; 10.2465; 2.34648; 0.67332; 0.22466; 0.082217 
p 1.021269; 0.866381; 0.342309; 0.1275 

In the notation (mlm2) [nln2] , rn 1 gaussian s functions are contracted into n 1 
functions and m2 gaussian p functions are contracted into n 2 functions. For  Li +, 
the 5 first s gaussian functions are contracted into one function. The contraction 
coefficients are given in parentheses. All the other functions are kept uncontracted. 
These basis sets give respectively Escv(Li +) -= -7.2359875 hartree and EscF(H2)= 
- 1.1332821 hartree. 

In the case of two hydrogen molecules, some points have been computed with 
this basis (64) [64], but a smaller basis set (62) [32] is used for the general study in 
which the four first s gaussian functions are contracted into one function. 

H2 (62) [32] 
s 68.16(.00255); 10.2465(0.1938); 2.34648(.09280);.673320(.29430); .22466; 

.082217 
p i.;  0.1. 

1 The SCF calculations have been performed with "Asterix", a system of programs for the Univac 
1110 developed in Strasbourg (A. Dedieu, J. Demuynck, M. M. Rohmer, A. Strich and A. Veillard, 
unpublished work). 
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This basis set gives E s c ~ - ( H 2 ) =  - 1.132676 hartree. We know that this basis set 
does not provide very good results in the treatment of the super-system in- 
cluding the total correlation energy because of a bad saturation with respect to the 
intramolecular correlation [11]. But we have checked that around'the van der 
Waals minimum the first order energy is very close to the results obtained from 
basis (64) [-64], the largest difference (0.15 x 10-4 hartree) being obtained for the 
linear configuration. Bases (64) [-64] and (62) [32] seem comparable to bases IX 
[4s, 3p] and VII [4s, 2p] respectively, used by Urban and Hobza [12] in the SCF 
treatment of the supersystem. For the configurations that they have studied, the 
discrepancy for E~ is less important than for Egcv. 

As in previous papers [-7, 11], (1) is the rectangular planar configuration, (2) 
the linear one, (3) the planar perpendicular one or T configuration, and (4) the 
non planar perpendicular configuration. 

3. Results 

3.1. Effect of the Overlap on the First Order Energies 

Tables 1 and 2 allow us to study the effect of the overlap on the first order 
energies. It is obvious that the neglect of the overlap (E AM) involves a bad descrip- 
tion of the first order term. In the best case (Table 1, linear configuration of 
Li + + H 2 )  E AM i snot  repulsive enough at large and intermediate distances and 

Table 1. Li § +H2-Fi r s t  order energies in 10 4 Hartree. 
Basis Li + (94) [54] 

H2 (64) [64] 

0 d a.u. E 1 Eolect Eo~h. 

Eelect Eelect Ecoul Eexch Eoxch 
(Ref. [13]) 

90 ~ 3 163.8 163.55 -196.32 123.93 -75.42 -85 .2  39.62 -120.90 
C2v 3.5 32.9 32.66 -93.41 18.87 -50.91 13.79 -42.50 

3.75 7.2 6.73 - 1.34 8.07 
4 - 6 . 6  -6 .77  -49.70 -11.48 -35.02 35.9 4 .71 -14.68 
4.5 -15 .7  -15.73 -29.87 -17.34 -24.81 1.61 -5 .05  
5 -15 .6  -15.56 -19.84 -16.13 -18.08 -18 .4  0.56 -1 .75  
6 -10 .8  -10.79 -10.52 -10.86 -10.30 -10 .7  0.07 -0 .22  
7 - 7 . 0  -7 .07  -6 .32  -7 .08  -6 .29  - 6 . 7  0.01 -0 .03  

10 - 2 . 4  -2 .46  -1 .87  -2 .46  -1 .87  - 2 . 3  0.0 0.0 

0 o 

linear 
2.5 1527.65 - 126.67 1360.50 421.12 167.15 -547.79 
3.5 249.4 261.71 61.82 240.67 128.93 21.03 -67.11 
4 129.2 129.11 60.69 1 2 1 . 8 1  83.81 71.9 7.29 -23.12 
4.5 72.8 72.93 50.04 70.42 58.02 2.51 -7 .99  
4.7 60.0 60.12 45.55 58.47 50.77 1.64 -5 .22  
5 46.4 46.47 39.30 45.60 42.07 36.8 0.87 -2 .76  
6 24.0 24.00 24.04 23.89 24.38 21.3 0.11 -0 .34  
7 14.7 14.66 15.46 14.65 15.50 13.4 0.01 -0 .04  

1 0  5 4.96 5.59 4.96 5.59 4.6 0.0 
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Table 2. Ha+Hz-First  order energies in 10 -4 hartree, wasis (62) [32]. The values in parenthesis 
correspond to basis (64) [64] 

E1 Eelect Eexch 

Configuration d a.u. E A E~O E1AM BO EelectAM Eexc hBO Eexc hAM Eerlect 

1 5 18.50 21.27 -38.30 9.50 -3.74 11 .77  -34.55 
rectangular (18.62) (19.05) (-35.46) (8.62) (-3)37) (10.44) (-32.09) 

5.5 7.80 9.45 =16.34 4.24 -1.21 5.21 -15.13 
6 3.33 4.20 -6.79 1.96 -0.27 2.24 -6.53 
6.5 1.48 1.89 -2.72 0.96 -0.04 0 .93  -2.77 

(1.52) (1.61) (--2.49) (0.81) (-0.08) (0.80) (-2.41) 
7 0.69 0.87 -1.02 0.50 0.13 0.37 -1.15 
7.5 0.36 0.42 -0.34 0.28 0.12 0.14 -0.47 

10 0.05 0.03 - 0.02 0.03 0.03 0.00 - 0.00 

2 
linear 

3 
T conf. 

4 
non planar 

5 36.44 31.61 -55.055 19 .43  -2.39 12 .18  -52.66 
(38.58) (39.32) (-59.64) (23.36) (-2.38) (15.95) (-57.26) 

5.5 15.74 14.92 -19.09 10.17 2.30 4.75 -21.39 
6 7.03 5.51 -7.52 3.71 0.93 1 .80 -8.44 
6.5 3.31 2.57 -2.33 1.90 0.92 0.67 -3.25 

(3.44) (3.64) (-3.79) (2.36) (0.67) (1.27) (-4.46) 
7 1.67 1.34 - 0.49 1.09 0.74 0.25 - 1.23 
7.5 0.93 0.78 0.10 0.69 0.55 0.09 -0.46 

10 0.14 0.13 0.13 0.13 0.13 0.00 -0.00 

5 21.03 20.06 -49.91 8.10 -8.15 11 .96  -41.76 
(21.09) (21.71) (-51.55) (8.76) (-8.73) (12.95) (-42.82) 

5.5 8.000 7.52 -21.34 2.54 -3.73 4.97 -17.61 
6 2.81 2.61 -9.12 0.60 - 1.83 2.01 -7.29 
6.5 0.85 0.76 -3.96 -0.03 -0.99 0.80 -2.97 

(0.85) (0.97) (-4.54) ( -0 .04 ) ( -1 .26 )  (1.01) (-3.28) 
7 0.13 0.10 -1.78 -0.21 -0.59 0.31 -1.19 
7.5 -0.09 -0.11 -0.86 -0.23 -0"39 0.11 -0.47 

10 -0.07 -0.09 -0.10 -0.09 -0.09 0.00 0.00 

5 17.45 20 .33  -39.27 8.55 -4.74 11 .77  -34.53 
(17.48) (17.91) (-36.38) (7.52) (-4.40) (10.40) (-31.98) 

5,5 7.15 8.85 -16.98 3.63 -1.85 5.21 -15.13 
6 2.91 3.81 - 11.03 1.56 -4.51 2.24 -6.53 
6.5 1.19 1.61 -3.02 0.68 -0.25 0 .93  -2.77 

(1.13) (1.28) (-2.82) (0.49) (-0.41) (0.79) (-2.41) 
7 0.50 0.67 -1.24 0.30 -0.09 0.37 -1.15 
7.5 0.22 0.27 -0.50 0.13 -0.04 0.14 -0.47 

10 0.01 -0.01 -0.02 -0.01 -0.02 0.00 -0.00 

b e c o m e s  n e g a t i v e  a t  sho r t  d i s t ances  (2.5 a.u.).  I n  al l  t he  o t h e r  con f igu ra t i ons ,  

E AM is n e g a t i v e  wh i l e  we expec t  r epu l s ive  cu rves  at  leas t  at  sho r t  d is tances .  I t  is 

i n t e r e s t i ng  to  s tudy  s epa ra t e ly  the  b e h a v i o u r  o f  the  e l ec t ros t a t i c  a n d  e x c h a n g e  

par ts .  W e  c a n  see t h a t  E)x~h is sys t ema t i ca l ly  n e g a t i v e  a n d  falls  a t  sho r t  d i s t ances  

whi le  E~ ~ is r epu ls ive ,  w i t h  dec r ea s ing  energ ies  at  l a rge  d is tances .  So,  E~x~h is n o t  

ab le  to  desc r ibe  t he  e x c h a n g e  energy ,  even  qua l i t a t i ve ly .  T h e  b e h a v i o u r  o f  Eelec tAM 
is m o r e  confus ing .  I n  the  l inear  c o n f i g u r a t i o n  o f  Li  § + H2,  E ~ c t  is n o t  r epu l s ive  

e n o u g h  b u t  q u a l i t a t i v e l y  co r r ec t  even  at  sho r t  d i s t ances  ( T a b l e  1). W e  m u s t  n o t i c e  
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that, in this configuration, EBlOct is strongly repulsive at any distance. On the 
contrary, in the C2v configuration of Li++ HE (Table 1) and the T configuration 
of H2 + H2 (Table 2) EB1Oct exhibits an attractive minimum while EAMct stays always 
attractive. Of the other three configurations of Ha + H2 where EeBiOct is repulsive, 
EAMet is repulsive at intermediate distance but becomes attractive at d= 5 a.u., for 
the most repulsive one (linear case) while the other two curves are completely 
attractive. So the neglect of the charge overlap clearly prevents the repulsion 
between the molecules. Ref. [5c] also exhibits an orientation-dependent charge- 
overlap-effect in the Coulomb energy of the system NH3-H + and shows the role 
of each term of the multipole expansion. This effect has important consequences 
for the calculations based on the multipole expansion. As we have said previously 
the calculations based on this expansion have the common property with EAMct 
that the charge overlap is neglected. Then we expect that AM Eelee t and the electro- 
static energy computed in this way should have a similar behaviour. We can check 
that this is so for both configurations of Li + + H 2 (Table 1, compare Eelec tAM and EC~ 
given by KutZelnigg et al. E13] from the interaction between the monopole in Li § 
and the permanent quadrupole in H2). If we consider that the van der Waals mini- 
mum is around 3.75 a.u. and 4.7 a.u. for the Czv and the linear configuration 
respectively, we see that the discrepancy with E~c t becomes significant precisely at 
this distance. Then such methods should not be able to provide a good depth of 
the van der Waals minimum unless this effect is artificially taken into account (for 
instance through a repulsive term in the semi-empirical methods.) 

3.2. Compar&on between the Perturbative Procedure and the Supermolecule 
Treatment 

The first two columns of Tables 1 and 2 provide a direct numerical comparison 
between the perturbativemethod using biorthogonal orbitals and the supermolecule 
treatment where a Schmidt orthogonalization is performed. With the large basis 
set the agreement is very good (Table 1 and values in parenthesis of.Table 2). This 
means that the two procedures of orthogonalization are equivalent if the overlap 
is correctly described. Calculations with different basis sets show that the bi- 
orthogonal orbitals procedure is much more sensitive to the basis set (especially 
to the extension of the s set) than the Schmidt orthogonalization. For example, in 
the case of the rectangular configuration at d=  6 a.u. we obtain respectively 0.664, 
0.695, 2.866, 4.20 • 10 -4 hartree from the biorthogonal orbitals procedure and 
2.329, 2.455, 3.069, 3.33 • 10 -4 hartree from the Schmidt orthogonalization with 
the corresponding bases (41) [21], (43) [23], 10 s (which are bases A3, B3 and II 
in Ref. [7]) and (62) [32]. With basis (64) [64] we have only computed E~ = 
3.405 • 10 -4 hartree but the results obtained for 5 and 6.5 a.u. lead us to think 
that E~ ~ should be very close to this value. 

3.3. Comparison of our Results with Previous Semi-Empirical Works 

As seen previously, our E~ M term is comparable with E ~~ in the case of 
Li + + H  z (Table 1), E ~~ being still more attractive than E~ ~ at short distances. 
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This energy E r176 corresponds to the interaction between the monopole in Li + and 
the quadrupole in H2, the values of the quadrupole moment (0.460 a.u.) being 
taken from the calculation of McLean and Yoshimine [-14]. For two hydrogen 
molecules, our work is compared with Refs. [15-17]. Curiously, the exchange 
energy provides a better agreement than the electrostatic part. As this last term in 
Refs. [15-17] is computed from the multipole expansion, we could expect that 
its behaviour would be similar to EAMct. But Table 14-4-1 in Ref. [17], Table 1 in 
Ref. [16] and expression (5) in Ref. [15a] give an attractive energy for the T 
configuration and a repulsive energy in the three other cases and even when the 
sign is the same as for AU Eelee t the numerical values are seriously different. A com- 
parison with Ee~ec t does not improve the agreement. 

In contrast, as can be seen in Table 3, the exchange energy exhibits the same 
behaviour in the four series of calculations. The best agreement occurs between 

Table 3 .  H 2  + H 2  exchange energies in 10 -4 hartree 

BO Configuration d a . u .  EexCh Ref. [15] E~terio Ref. [ 1 6 ]  q S i 1 R e f .  [ 1 7 ]  

1 4 5 6 . 0 6  - -  - -  - -  

rectangular 4 . 2 8 9  - -  5 1 . 7 8  5 7 . 6 4  - -  

5 1 1 . 7 7  - -  - -  8 . 2 6  

5 . 1 4 0  - -  1 1 . 3 9  1 1 . 3 9  - -  

6 2 . 2 4  - -  - -  1 . 1 6  

6 . 0 0 9  - -  2 , 3 5 8  2 . 0 8  - -  

6 . 8 5 9  - -  0 . 4 5  0 . 3 6  - -  

7 0 . 3 7  - -  - -  0 . 2 2  

2 4 7 0 . 3 2  - -  - -  - -  

linear 4 , 2 8 9  - -  5 7 . 6 7  2 1 2 . 3 9  - -  

5 1 2 . 1 8  - -  - -  6 5 . 4 9  

5 . 1 4 0  - -  1 4 . 2 4  3 7 . 5 3  - -  

6 1 , 8 0  - -  - -  5 . 6 6  

6 , 0 0 9  - -  3 . 1 3  6 . 0 7  - -  

6 . 8 5 9  - -  0 . 6 3  0 . 8 9  - -  

7 0 . 2 5  - -  - -  0 . 7 6  

3 4 6 2 . 8 5  - -  - -  - -  

T c o n f .  4 . 2 8 9  - -  5 6 . 3 6  1 0 5 . 8 0  - -  

5 1 1 . 9 6  - -  - -  2 3 . 4 4  

5 . 1 4 0  - -  1 2 . 7 9  2 0 . 4 1  - -  

6 2 . 0 2  - -  - -  2 . 5 4  

6 . 0 0 9  - -  2 . 7 3  3 . 5 4  - -  

6 . 8 5 9  - -  0 . 5 2  0 . 5 7  - -  

7 0 . 3 1  - -  - -  0 . 4 0  

4 4 5 5 . 9 0  - -  - -  - -  

non planar 4 . 2 8 9  - -  5 2 . 3 2  5 4 . 3 7  - -  

5 1 1 . 7 7  - -  - -  7 . 9 8  

5 . 1 4 0  - -  1 1 . 3 6  1 0 . 9 0  - -  

6 2 , 2 4  - -  - -  1 . 1 4  

6 . 0 0 9  - -  2 . 3 4  2 . 0 2  - -  

6 . 8 5 9  - -  0 . 4 3  0 . 3 5  - -  

7 0 . 3 7  - -  - -  0 . 2 2  
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E~~ and Evett and Margenau's values, the most important difference being for 
the linear configuration. We must notice that it is this linear configuration which 
presents the largest range of values. 

In summary we can see what information 'is provided by this work." 

(a) The systematic agreement between E~ and E~ ~ shows that these two procedures 
are equivalent when large basis sets are used, the first one being less sensitive 
to a good description of  the overlap. The neglect of the charge overlap leads to 
an unacceptable exchange term while the electrostatic term, good at large 
distances, becomes unvalid around the van der Waals minimum. The limit 
of the validity of  the multipole expansion should be comparable to that of 
E~ct .  

(b) For  H 2 + H  2 our calculations confirm the stability of the T configuration 
through the electrostatic interaction as suggested by Buckingham [18]. But as 
seen in Ref. [7] [11], the electrostatic energy is not the only element of  
stabilization of  these configurations: while the exchange energy is comparable 
in configurations (1), (3) and (4), the dispersion energy is more attractive in (3) 
than in (1) and (4). We can notice that for each of these three components of 
the energy, (1) and (4) exhibit a rather comparable behaviour. For  Li § + HE, 
the stability of  the C2~ configuration is clearly due to the electrostatic energy, 
the exchange term and the dispersion term being almost negligible. 

(c) As discussed by Urban and Hobza [12], the first order energy of H 2 + H  2 
obtained with large basis sets is somewhat more repulsive than the results given 
in paper [7] from smaller basis sets. We have the same phenomena near the 
van der Waals minimum for Li + + H2. They also show [12] that the polariza- 
tion and the charge transfer energies, neglected in paper [7], are small but not 
negligible so that these attractive energies should partly compensate the error 
due to the use of small basis set on the first order term. Further calculations 
performed on the dispersion energy with basis (64) [64] increase slightly the 
attractive dispersion energy with respect to basis B3 given in Ref. [7]. This 
explains why a treatment where the dispersion energy is added to the SCF 
supermolecule energy, provides (at least in the case of the T configuration 
which is the more important in the average over the form configurations [ 15a]) 
values which are very close to the total energies given in Table VII of Ref. [7] 
with basis B3. Values for the four configurations will be available very soon. 
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